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A Novel Method to Predict Knee Osteoarthritis
Progression on MRI Using Machine
Learning Methods

Yaodong Du, Rania Almajalid, Juan Shan

Abstract—This paper explored the hidden biomedical
information from knee magnetic resonance (MR) images for
osteoarthritis (OA) prediction. We have computed the car-
tilage damage index (CDI) information from 36 informative
locations on tibiofemoral cartilage compartment from 3-D
MR imaging and used principal component analysis (PCA)
analysis to process the feature set. Four machine learning
methods (artificia neural network (ANN), support vector
machine, random forest, and naive Bayes) were employed
to predict the progression of OA, which was measured
by the change of Kellgren and Lawrence (KL) grade, joint
space narrowing on medial compartment (JSM) grade, and
joint space narrowing on lateral compartment (JSL) grade.
To examine the different effects of medial and lateral infor-
mative locations, we have divided the 36-D feature setinto a
18-D medial feature set and a 18-D lateral feature set and run
the experiment on four classifie s separately. Experiment
results showed that the medial feature set generated better
prediction performance than the lateral feature set, while
using the total 36-D feature set generated the best. PCA
analysis is helpful in feature space reduction and perfor-
mance improvement. For KL grade prediction, the best
performance was achieved by ANN with AUC = 0.761 and
F-measure = 0.714. For JSM grade prediction, the best
performance was achieved by random forest with AUC =
0.785 and F-measure = 0.743, while for JSL grade prediction,
the best performance was achieved by the ANN with AUC
= 0.695 and F-measure = 0.796. As experiment results
showing that the informative locations on medial compart-
ment provide more distinguishing features than informative
locations on the lateral compartment, it could be considered
to select more points from the medial compartment while
reducing the number of points from the lateral compartment
to improve clinical CDI design.

Index Terms—Knee osteoarthritis, cartilage damage
index, informative locations, feature representation,
machine learning.

I. INTRODUCTION

I ( NEE osteoarthritis (OA) is a disease that increases in
incidence and prevalence with advancing age, such that
in those over the age of 60, about 10% of men and 13%
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of women have symptomatic knee OA [1]. With the aging
of the population, the number of people in the age range
with the greatest severity of OA continues to increase [2].
Furthermore, OA is a leading cause of morbidity and disability,
and thus carries high socioeconomic costs. In 2004, arthritis
was estimated to cost the United States $336 billion, or 3%
of the gross domestic product, with OA as the most common
form of arthritis [3], [4].

The pathology of OA disease is still unclear and there
are no interventions that effectively modify the OA disease
process [5]. In clinical studies, OA is mainly diagnosed
through medical images. Measurement of cartilage change is
a primary assessment of structural progression of OA and is
used to evaluate the effectiveness of new treatments. Magnetic
resonance (MR) imaging is a noninvasive technology that can
generate 3-dimensional images of intra-articular soft-tissue
structures, including cartilage. However, obtaining accurate
and reproducible quantitative measurements from MRI scans
is burdensome due to the structure and morphology of the
knee as well as the nature of MR imaging [6]. It may take
up to six hours for a reader to manually segment each series
of 3-dimensional (3D) knee MRI. Furthermore, operators
who use cartilage segmentation software often need extensive
training [7] which further contributes to the time and cost.

Over the past decade, researchers have developed different
approaches to reduce the burden of measuring knee carti-
lage on MR images. These includes segmenting alternate
MR slices or confning measurements to partial regions of
cartilage [8]-[10]. Computer-aided algorithms (e.g., active
contours, B-splines) have also been developed to assist with
cartilage segmentation for MR images [26]-[28]. Unfortu-
nately, these methods lack suff cient accuracy and reliability to
detect small cartilage changes [10], [25]. Thus, there remains
a need among researchers for a quantificatio method that can
be rapidly computed and has good reproducibility, validity,
and sensitivity to change.

In recent studies, a novel and sensitive cartilage biomarker,
called cartilage damage index (CDI), was developed and
validated by Zhang et al. [11], [12]. The CDI demonstrated
increased measurement eff ciency and scale responsiveness
when measurements of cartilage thickness were confned to
points on the cartilage surface. Using CDI was able to detect
up to a 14.3% annual cartilage change compared to 2~3%
annual cartilage change detected by traditional methods [29].
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This work is inspired by the observation that in the process
of computing CDI score for a knee joint, each of the 60 index
locations was measured separately, but only the summation of
all these locations or a subgroup of these locations were used
to compute CDI. In this work, we focus on using data mining
and machine learning methods to fully explore the information
contained in each index location. We treat CDI information
from each location as an individual feature dimension and
use principle component analysis to fnd the optimum feature
representation. The optimum feature set serves as the input
for machine learning methods to learn the mapping function
between cartilage change at CDI locations and OA severity
grade change. We used Kellgren and Lawrence (KL) grade,
Joint Space Narrowing on Medial compartment (JSM) grade
and Joint Space Narrowing on Lateral compartment (JSL)
grade as OA severity grade in this study.

The rest of the paper is organized as follows. In Section II,
we described the materials and methods used in this research,
including OAI database, defi ition and measurement of CDI
locations, feature analysis, machine learning methods and
evaluation metrics. In Section III, we presented and analyzed
the results from the experiments described in Section II.
Finally, in Section IV, we drew conclusion and discussed future
work.

Il. MATERIALS AND METHODS
A. Data

All the data and MR images used in this study were
selected from the Osteoarthritis Initiative (OAI). OAI was
initiated to promote the evaluation of OA biomarkers as
potential surrogate endpoints [14]. It includes four clinical
centers that recruited approximately 4800 men and women
(ages 45-79 years) with or at risk for knee OA. The participants
underwent annual knee radiography and MR scans during the
frst four years and then biannually for the subsequent 4 years.
The radiographic assessments are available from the OAI. The
OALI cohort has excellent follow-up retention rates at 4 years
(90%) and 6 years (~88%). The full set of publicly-available
OAI data can be viewed on the OAI website. In this study,
we selected a convenience sample of 100 pairs of knee (both
baseline and 24-month MR scans) that had complete data (i.e.,
clinical, static knee alignment, semi-quantitative radiographic
grading, and joint space width). We selected our samples to
represent the range of radiographic OA severity (KL scores 0
to 4) enriched with knees that showed radiographic worsening
over time (KL scores changes between baseline and 24-month
follow-up).

B. Cartilage Damage Index

Cartilage Damage Index (CDI) is a novel osteoarthritis car-
tilage damage quantificati n method that utilizes informative
locations on knee MR images [11]-[13]. The CDI quantif es
cartilage thickness by measuring certain informative locations
on the reconstructed cartilage layer instead of measuring
cartilage on all MR slides. The informative locations are
selected based on the statistical analysis that certain artic-
ular cartilage locations are more susceptible to occurrence

Fig. 1. Informative locations (yellow points) on 3D cartilage layer [13].

of OA damage and thus may be more informative in the
measurement of OA progression. To measure CDI, totally
60 locations on the cartilage layer are selected, including
18 locations from medial tibiofemoral compartment, 18 loca-
tions from lateral tibiofemoral, and 24 locations from patella
compartment (Fig. 1). CDI has been validated using images
from Osteoarthritis Initiative (OAI) database and successfully
applied to clinical trials [23]. Statistical studies show that
CDI is associated with commonly used OA severity measures
including Joint Space Narrowing (JSN) grade, Kellgren and
Lawrence (KL) score, Joint Space Width (JSW), and knee
alignment with p-values <0.05 [11], [12].

These informative locations are selected from regions on
articular surface where cartilage denudation frequently happen.
In the study to fnd the most informative locations, a 3D
articular surface of the distal femur and proximal tibia is
constructed using sequence of 2D MR slides, as shown in
Fig. 1. Then the 3D surface is projected to a 2D rectangular
coordinate systems to represent the articular surface of the
distal femur and proximal tibia.

18 informative locations are selected within medial and
lateral femur compartments (yellow dots in Fig. 1), 18 infor-
mative locations are selected within medial and lateral tibia,
and 24 informative locations are selected within patella. In spe-
cific 9 locations are selected within the region of the most
commonly denuded areas on the medial femur, medial tibia,
lateral femur and lateral tibia, and 12 locations within medial
patellofemoral and lateral patellofemoral respectively. In this
paper, we used 36 informative locations from medial and
lateral tibiofemoral compartments to do the analysis because
they are more related with OA progression.

To measure the CDI information for a new set of MR images
(one knee), frst step is to indicate the most medial and lateral
MR image slices within the knee. These images designate the
minimum and maximum values of the medial-to-lateral axis
on the 2D coordinate system. Next, the software automatically
determines the MR image slices that contain the informative
locations. On each of these slices the bone-cartilage boundary
need to be manually traced by an experienced expert using
predefned segmentation rules. The software then translates
the length of the bone-cartilage boundary to a standard-
ized anterior-to-posterior axis and indicates the predefine
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Fig. 2. The thickness measurement of six CDI locations on one MR slide
of the medial tibiofemoral compartment [12].

informative locations so that the expert could measure the
cartilage thickness at those points (Fig. 2). The software then
computes the CDI score by summing the products of cartilage
thickness, cartilage length (anterior-posterior), and voxel size
from each informative location.

C. Feature Analysis

Unlike the defi ition of CDI score which computes the
summation of thickness information from all CDI locations,
we used the thickness information from each informative loca-
tion as an individual feature. For each informative location,
the thickness change over two years (subtracting baseline
data from 24-month data) is computed as one input feature.
Therefore, 36 informative locations generate a 36-dimensional
feature set. The corresponding class label is the change of
KL grades (change or no-change). These 36 features are
further divided into two groups, 18 features from medial
tibiofemoral compartment (including medial tibia and medial
femur) and 18 features from lateral tibiofemoral compartment
(including lateral tibia and lateral femur). We plan to analyze
the 36 features as well as the two subgroups (medial and
lateral) separately as research showed that medial OA is more
common than lateral OA [15], [16].

We analyzed the feature space by principal component
analysis (PCA) [17], with the purpose to fnd the most
representative optimum feature set. PCA projects data onto
a new space in which consecutive dimensions contain less
and less of the variance of the original dataspace and com-
presses the most important information onto a subspace with
lower dimensionality than the original space. Before running
PCA, as a preprocessing step, we normalized data into range
[0, 1] for each dimension. We tested the feature space with
5-100% of the projected subspace using 10-fold cross-
validation to establish how many principal components needed
to be included to reach full performance.

D. Machine Learning Methods

We explored the use of four machine learning methods to
learn the mapping function between the CDI feature space and

OA severity denoted by KL grades. The four machine learning
methods are artif cial neural network (ANN), support vector
machine (SVM), random forest and naive Bayes.

ANNs are powerful classifier that are based on the structure
and functions of biological neural networks [18]. An ANN is
composed of an input layer, an output layer and one or more
hidden layers. In this work, a single hidden layer with n
neurons was employed as the network structure, where n is
computed as (# of attributes + # of classes)/2. The backprop-
agation algorithm is used to update the weights of neurons.

A SVM constructs a hyperplane or set of hyperplanes in
a high- or infnite-dimensional space to separate data [19].
It uses a kernel function to map data into the higher dimen-
sionality to obtain a better distribution and therefore a better
classificatio result. SVMs are have been reported to be a
superior method in many classif cation problems. In this work,
the radial basis function (RBF) was adopted as the kernel
function.

A random forest is an ensemble learning method that
constructs a multitude of decision trees at training time and
outputs the class that is the overall prediction of the individual
trees [20]. Random forests correct the overfittin problem
of decision trees and are commonly used for classif cation,
regression and other tasks with an efficien performance on
large scale data bases.

Naive Bayes classifie s are a family of simple probabilistic
classifers based on applying Bayes’ theorem with strong
(naive) independence assumptions between the features [21].
It is a popular method for text categorization problem and
fnds application on automatic medical diagnosis. In other
classificati n felds, naive Bayes is usually not as competitive
as other more advanced machine learning methods such as
SVM and ANN, but in this work, we found that it often
achieved good performance in the experiments of OA severity
prediction.

All the classifier were implemented in Weka software
package [22], which was used to run experiments in this work.

E. Evaluation

10-fold cross-validation was used for training and testing
procedure for all four classifers, in which data were divided
into 10 equal groups, and for each iteration, one was held
out for testing while the remaining nine groups were used for
training, until all the data had been used as testing data once.

We used several metrics to evaluate performance of our
classifie s: precision (also called positive predictive value
(PPV)), recall (also called sensitivity), F-measure, Matthew’s
correlation coeff cient (MCC), and the area under the receiver
operating characteristic (ROC) curve (AUC). ROC curves
provide an indication of the tradeoff between classificatio
sensitivity and specif city as the classif er conf dence threshold
increases or decreases. The F-measure, provides an indication
of overall classificatio accuracy as a weighted average of
precision and recall for a specifie confidenc threshold. MCC
is a powerful accuracy evaluation criterion of machine learning
methods. Especially, when the number of negative samples
and positive samples are obviously unbalanced, MCC gives a
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Fig. 3. ROC curves of ANN classifie with different percentages of PCA
components obtained from 18 medial features.

better evaluation than overall accuracy. The formulas of the
evaluation metrics are provided below.

.. TP
Precision = —— (1
TP 4 FP
TP
Recall = —— (2)
TP + FN
Precision - Recall
F — Measure = 3)

" Precision + Recall
TP - TN — FP - FN
+/(TP+FP)(TP+FN)(TN+FP)(TN+FN)
4)

where TP is the number of true positives, TN is the number
of true negatives, FP is the number of false positives and FN
is the number of false negatives. In this work, positive class
is defned as KL grade is changed after 24-month follow-up
and negative class is define as KL grade has no-change after
24-month follow-up. Same strategy was used for JSM and JSL
grades.

MCC =

[1l. EXPERIMENT AND RESULTS
A. Experiments for KL Grade Prediction

1) Experiment 1 (Predict KL Grade Change Using 18 Medial
Tibiofemoral Informative Locations): Experiment 1 used
18 information locations on medial tibiofemoral compartment
to predict the change of KL grade. For each informative
location, the product of cartilage thickness, cartilage length
(anterior-posterior), and voxel size was computed from both
baseline and 24-month data, the change of the two products
was used to represent CDI information of each informative
location. The 18-dimensional feature set was normalized frst
and then processed by PCA. We tested the performance of
all four machine learning methods with different PCA com-
ponent percentages using 10-fold cross-validation. The ROC
performance of each of the four machine learning methods
was plotted in Figs. 3-6.

For ANN, the best performance was achieved with AUC
0.731 and F-measure 0.708 when using the top 1 PCA
component which covered 20% of PCA variance. For SVM,
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Fig. 4. ROC curves of SVM classifie with different percentages of PCA
components obtained from 18 medial features.
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Fig. 5. ROC curves of random forest classifie with different percentages
of PCA components obtained from 18 medial features.

the best performance was achieved with AUC 0.691 and F-
measure 0.586 using the top 10 PCA components which
covered 70% PCA wvariance. It should be noted that the
MCC was 0, which indicated that the SVM classifie all
samples into one class. For random forest, using top 65% PCA
achieved its best performance but the performance was weaker
than the best performance of ANN. Surprisingly, among all
the four classifier , the best performance was achieved by
naive Bayes with raw data, i.e., AUC 0.742 and F-measure
0.700. The result indicated that PCA analysis did not help
improving the performance of naive Bayes classif er using the
18-dimensional medial feature set, but did help the other three
classifier improve the performance using this feature set. The
best performance of each classifie was summarized in Table |
with different evaluation metrics.

2) Experiment 2 (Predict KL Grade Change Using 18 Lat-
eral Tibiofemoral Informative Locations): As research showed
that cartilage damage is more likely to happen on medial
tibiofemoral compartment than lateral tibiofemoral compart-
ment [15], [16], we decided to analyze the informative loca-
tions from the two compartments separately. The similar
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TABLE |
BEST PERFORMANCE OF EACH OF THE FOUR
CLASSIFIERS ON 18 MEDIAL FEATURES

Classifier| P.CA Precision | Recall | F-Measure | MCC |ROC area
variance
ANN | Top 20% 0.714 0.737 0.708 0.285 0.731
SVM | Top 70% 0.5 0.707 0.586 0 0.691
Random
Forest | Top 65% 0.653 0.697 0.655 0.144 0.702
Naive
Bayes | Raw data | 0.744 0.687 0.700 0.362 0.742
1 |
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Fig. 7. ROC curves of ANN classifie with different percentages of PCA
components obtained from 18 lateral features.

experiments were conducted as described in Experiment 1,
by replacing the 18 medial informative locations with 18 lat-
eral informative locations. Figs. 7-10 plotted the performance
of the four machine learning methods with different PCA
component percentages using 10-fold cross-validation.

Using lateral feature set, we can see that the performance of
all four classif ers dropped compared with using medial feature
set (see Figs. 7-10). The best performance was achieved by
random forest with AUC 0.594 and F-measure 0.612. The
experiment results indicated that medial informative locations
contain more important and distinguishing information than
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Fig. 8. ROC curves of SVM classifie with different percentages of PCA
components obtained from 18 lateral features.
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Fig. 9. ROC curves of random forest classifie with different percentages
of PCA components obtained from 18 lateral features.
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Fig. 10. ROC curves of naive Bayes classifie with different percentages
of PCA components obtained from 18 lateral features.

lateral informative locations, for KL grade change prediction.
Table II summarized the best performance of each method
using the 18-dimensional lateral feature set.
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TABLE Il
BEST PERFORMANCE OF EACH OF THE FOUR CLASSIFIERS USING
PCA ANALYSIS ON 18 LATERAL FEATURES

. PCA | Precision Recall ROC
Classifier variance| (PPV) | (Sensitivity) F-Measure | MCC Area
ANN 85% 0.556 0.556 0.556 -0.073| 0.525
SVM 90% 0.5 0.707 0.586 0 0.548
Random
forest [Raw data 0.6 0.677 0.612 0.028 | 0.594
Naive
Bayes [Raw data] 0.612 0.657 0.625 0.06 0.521
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Fig. 11. ROC curves of ANN classifie with different percentages of PCA
components obtained from 36 features.

3) Experiment 3 (Predict KL Grade Change Using 36 Medial
and Lateral Tibiofemoral Informative Locations): In this exper-
iment, we combined both medial and lateral features to
form the 36-dimensional feature set. We ran PCA analysis
and machine learning methods on this feature set similar as
described in Experiment 1 and Experiment 2. Figs. 11-14
plotted the performance of the four machine learning methods
with different PCA component percentages using 10-fold
cross-validation.

When using the features from all 36 informative locations,
the performance of ANN and SVM improved as compared
with using medial or lateral features separately, while the
performance of the random forest and naive Bayes was about
the same. The best performance of the four classifier was
achieved by ANN using top 55% PCA, with AUC 0.761 and
F-measure 0.714. This is also the best performance among
all classifier using three different feature sets. Table III
summarized the best performance of each method using the
36-dimensional feature set.

B. Experiments for JSM and JSL Grades Prediction

JSM and JSL grades refer to the medial and lateral com-
partments for the Joint Space Narrowing (JSN) measurement,
respectively. Besides KL grade, JSM and JSL are often used
as measures for OA severity. In previous section, we evaluated
the relation between CDI feature points and KL grade; in this
section, we extended the experiment to evaluate the relation
between CDI feature points and the two new measures, JSL
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Fig. 12. ROC curves of SVM classifie with different percentages of PCA
components obtained from 36 features.
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Fig. 13. ROC curves of random forest classifie with different percent-
ages of PCA components obtained from 36 features.

TABLE IlI
BEST PERFORMANCE OF EACH OF THE FOUR CLASSIFIERS USING
PCA ANALYSIS ON BOTH MEDIAL AND LATERAL FEATURES

. PCA |Precision| Recall ROC
Classifier| | iance (PPV) | (Sensitivity) F-Measure | MCC |
ANN |Top 55%]| 0.712 0.717 0.714 0.304 | 0.761
SVM |Top 65%| 0.703 0.717 0.624 0.145 0.651
Random Raw data| 0.681 0.717 0.660 0.182 | 0.677
forest
Naive 1 Top 20%| 699 0.727 0.685 | 0237 | 0.724
Bayes

and JSM grades. The goal is to validate if the similar pattern
could be detected between CDI and different OA severity
measures.

1) Experiment 1 (Predict the Change of JSM Grade): JSM
grade is measured based on the joint space on the medial side
of a knee joint. To predict the JSM grade change, we frst
tried the 18 information locations on medial compartment.
Besides, we also tried using the CDI on the whole tibiofemoral
compartment, which comprises of both lateral and medial,
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Fig. 14. ROC curves of naive Bayes classifie with different percentages
of PCA components obtained from 36 features.

TABLE IV
BEST PREDICTION PERFORMANCE OF EACH MACHINE LEARNING
METHOD FOR JSM GRADE USING 18 MEDIAL FEATURES

. PCA Precision Recall ROC
Classifier variance | (PPV) | (Sensitivity) F-Measure | MCC Area
ANN | Top 30%| 0.688 0.707 0.691 0.268 | 0.694
SVM |Top20%| 0.737 0.747 0.720 0.354 | 0.705
Random 1o, 100%| 605 0.717 0.689 0.270 | 0.704

forest
Emve Raw Data| (742 0.707 0.716 039 | 0.738

ayes

TABLE V

BEST PREDICTION PERFORMANCE OF EACH MACHINE LEARNING
METHOD FOR JSM GRADE USING 36 FEATURES

. PCA | Precision Recall ROC
Classifier variance | (PPV) [ (Sensitivity) pMeasure QR Area
ANN |Top25% | 0.709 0.727 0.703 0.303 | 0.717
syM | Top 75% | 0.465 0.657 0.544 -0.119 | 0.681
Random | Top 55% | 0.746 0.758 0.743 0.396 | 0.785
forest
Naive |Raw Data| 0.715 0.657 0.669 0.318 | 0.742
Bayes

since experiment in section III.LA showed that all 36 CDI
points generate best prediction result for KL grade. The four
methods of the machine learning and PCA analysis on this
feature set were run similarly as described in section III.A.
Tables IV and V provide a summary of the best performance
of each machine learning method, using the 18-dimensional
feature set and the 36-dimensional feature set, respectively,
for JSM prediction.

As Tables IV and V showed, using 36-dimensional feature
set generated better prediction results in terms of different
evaluation metrics, than using 18 medial features. The best
AUC 0.785 was achieved by random forest classifer with
top 55% of PCA components using 36 CDI features. The
performance of three machine learning methods (ANN, naive
Bayes, and random forest) improved after adopting 36 features
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Fig. 15. ROC curves of naive Bayes with different percentages of PCA
components obtained from 18 medial features for JSM prediction.
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Fig. 16. ROC curves of random forest with different percentages of PCA
components obtained from 36 features for JSM prediction.

as compared to using medial features only, while the SVM’s
performance recorded a slight drop.

For each feature set, we selected the classifie that achieved
the best performance and depicted their performance in
Figs. 15-16. When using 18 medial features, the best perfor-
mance (AUC = 0.738) was from naive Bayes utilizing raw
data; when using 36 features, the best performance (AUC
= 0.785) was from random forest utilizing top 55% of PCA
components.

2) Experiment 2 (Predict the Change of JSL Grade): JSL
grade is measured from the lateral side of joint space narrow-
ing. Therefore, we used the 18 information locations on the
lateral compartment, as well as the 36 information locations on
both lateral and medial compartments. The interesting f nding
is similar to what we observed from the experiment for JSM
grade prediction, that using 36 CDI points achieved better
prediction accuracy than using 18 lateral CDI points, although
JSL is measure based on lateral compartment only.

The best performance exhibited by each clarifie was sum-
marized in Tables VI and VII, for 18-dimensional feature set
and 36-dimensional feature set, respectively. Figs. 17-18 dis-
played the ROC performance associated with the best machine
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TABLE VI
BEST PREDICTION PERFORMANCE OF EACH MACHINE LEARNING
METHOD FOR JSN GRADE USING 18 LATERAL FEATURES

. PCA Precision Recall ROC
Classifierl |- iance | (PPV) | (Sensitivity) | F-Measwre | MCC | o
ANN | Top 55%| 0.855 0.869 0.86 0313 | 0.639
SVM | Top98%| 0.771 0.869 0.817 | -0.038 | 0.618
Random |pay pata| 771 0.869 0.817 | -0.038 | 0.677

forest
Naive | Top10%| 0.769 0.848 0.807 | -0.066 | 0.657

Bayes

TABLE VII

BEST PREDICTION PERFORMANCE OF EACH MACHINE LEARNING
METHOD FOR JSN GRADE USING 36 FEATURES

. PCA | Precision Recall ROC
Classifier variance | (PPV) | (Sensitivity) F-Measure | MCC Area
ANN [Top 100%| 0.785 0.808 0.796 -0.01 0.695
SVM | Top97%| 0.815 0.808 0.811 0.131 0.648
Random |Raw Data| 0.771 0.869 0.817 -0.038 | 0.662
forest
Naive |Top 65% | 0.901 0.889 0.845 0.272 | 0.606
Bayes
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Fig. 17. ROC curves of naive Bayes classifie with different percentages
of PCA components obtained from 18 lateral features for JSN prediction.

learning method for each feature set (best performance using
18 features was from naive Bayes with AUC 0.657 while
best performance using 36 features was from ANN with AUC
0.695).

From the experiment results, it is clear that the correlation
between the JSL grade change and the CDI feature sets
is weaker than the correlation between the JSM grade and
CDI feature sets. When all 36 informative locations were
used, prediction performance improved for both JSM and JSL
grades, though accuracy of JSL prediction is still lower than
the accuracy of JSM prediction (AUC 0.695 vs. AUC 0.785).

From the experiment results we can f nd that the medial CDI
locations provide more distinguishing and informative features
than the lateral CDI locations when predicting the change of
joint space narrowing. This observation is consistent with the
fndings from clinical studies which showed the degenerative
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Fig. 18. ROC curves of ANN classifie with different percentages of PCA
components obtained from 36 features for JSN prediction.

changes in the knee for OA disease are more prone to affect
the medial compartment than the lateral compartments [24].

IV. DISCUSSION AND CONCLUSION

In this paper, we used machine learning methods to explore
the hidden biomedical information contained in the clinically
used Cartilage Damage Index (CDI), to predict the change of
KL, JSM, and JSL grades, respectively. These measurements
provide different perspective to measure the progression of
knee osteoarthritis disease. We computed the CDI information
from each of the 36 informative locations on tibiofemoral
compartment from 3D knee MR imaging and used PCA
analysis as a feature selection method. The processed feature
set and original raw feature set were served as input to four
machine learning methods (ANN, SVM, random forest and
naive Bayes). In particular, to examine the possible different
effect of medial and lateral informative locations, we have
divided the 36-dimensional feature set into 18-dimensional
medial feature set and 18-dimensional lateral feature set and
run the experiment on all four classifers separately with
10-fold cross-validation.

Several interesting fndings are observed. First, for KL
grade prediction, using medial feature set generated better
prediction performance than using lateral feature set, while
the total 36-dimensional feature set generated the best. Similar
fnding was observed for JSM and JSL grade prediction,
which indicates that CDI points from medial compartment
contains more valuable information for OA progression predic-
tion. Therefore, clinical application of CDI could consider to
select more points from the medial tibiofemoral compartment
while reduce the number of points selected from the lateral
tibiofemoral compartment.

Second, PCA analysis is helpful in feature space reduction
and performance improvement, for OA severity grade change
prediction. The best performance of KL grade prediction
was achieved by ANN using top 55% of PCA components
on the 36-dimensional feature set. The best performance of
JSM prediction was achieved by random forest also using
top 55% of PCA components, while the best performance of
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JSL prediction was achieved by ANN using 100% of PCA
components, both on 36-dimensional feature set.

Third, though JSM is defned and measured based on the
medial part of knee joint, it is found that using CDI locations
on both medial and lateral parts can better predict the change
of JSM, than using CDI locations from medial part only.
Consistent fnding is observed for JSL grade prediction. Our
rationale behind this is that medial and lateral compartments
are correlated closely with each other, so using CDI on both
compartments could provide more complete information for
machine learning methods to predict the change of the severity
grade.

In the future, we are going to incorporate cartilage informa-
tion from patella into the analysis, i.e., another 24 informative
locations defi ed by CDI. Patella compartment was usually
paid less attention than femur and tibia. We will analyze the
informative locations from patella and test the classifier using
combined feature set with medial and lateral CDI locations.
Besides, we will enlarge our dataset by selecting more cases
from OAI database. The current dataset size is limited and
prevents us from applying techniques such as deep learning
strategies which require large amount of training samples.
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